441C - Valera and Tubes - CodeForces Solution


constructive algorithms dfs and similar implementation *1500

Please click on ads to support us..

Python Code:

import sys
from bisect import bisect_right, bisect_left
import os
import sys
from io import BytesIO, IOBase
from math import factorial, floor, sqrt, inf, ceil
from collections import defaultdict, deque

BUFSIZE = 8192
 
class FastIO(IOBase):
    newlines = 0
 
    def __init__(self, file):
        self._fd = file.fileno()
        self.buffer = BytesIO()
        self.writable = "x" in file.mode or "r" not in file.mode
        self.write = self.buffer.write if self.writable else None
 
    def read(self):
        while True:
            b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
            if not b:
                break
            ptr = self.buffer.tell()
            self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
        self.newlines = 0
        return self.buffer.read()
 
    def readline(self):
        while self.newlines == 0:
            b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
            self.newlines = b.count(b"\n") + (not b)
            ptr = self.buffer.tell()
            self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
        self.newlines -= 1
        return self.buffer.readline()
 
    def flush(self):
        if self.writable:
            os.write(self._fd, self.buffer.getvalue())
            self.buffer.truncate(0), self.buffer.seek(0)
 
 
class IOWrapper(IOBase):
    def __init__(self, file):
        self.buffer = FastIO(file)
        self.flush = self.buffer.flush
        self.writable = self.buffer.writable
        self.write = lambda s: self.buffer.write(s.encode("ascii"))
        self.read = lambda: self.buffer.read().decode("ascii")
        self.readline = lambda: self.buffer.readline().decode("ascii")
 
 
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")

def inp():
    return(int(input()))
def inlt():
    return(list(map(int,input().split())))
def insr():
    s = input()
    return(s[:len(s) - 1])
def invr():
    return(map(int,input().split()))
def insr2():
    s = input()
    return(s.split(" "))


def make_divisors(n):
    divisors = []
    for i in range(1, int(n**0.5)+1):
        if n % i == 0:
            divisors.append(i)
            if i != n // i and i != 1:
                divisors.append(n // i)
    return divisors

def dfs(graph, vertex):
    visited = set()
    tree = []
    deq = deque([vertex])
    while deq:
        vertex = deq.pop()
        if vertex not in visited:
            visited.add(vertex)
            deq.extend(graph[vertex])
            tree.append(vertex)
    return tree

def find_in_sorted_list(elem, sorted_list):
        'Locate the leftmost value exactly equal to x'
    i = bisect_left(sorted_list, elem)
    if i != len(sorted_list) and sorted_list[i] == elem:
        return i
    return -1


class SegmentTree:
    def __init__(self, data, default=0, func=lambda a, b: a+b):
        
        self._default = default
        self._func = func
        self._len = len(data)
        self._size = _size = 1 << (self._len - 1).bit_length()
 
        self.data = [default] * (2 * _size)
        self.data[_size:_size + self._len] = data
        for i in reversed(range(_size)):
            self.data[i] = func(self.data[i + i], self.data[i + i + 1])
 
    def __delitem__(self, idx):
        self[idx] = self._default
 
    def __getitem__(self, idx):
        return self.data[idx + self._size]
 
    def __setitem__(self, idx, value):
        idx += self._size
        self.data[idx] = value
        idx >>= 1
        while idx:
            self.data[idx] = self._func(self.data[2 * idx], self.data[2 * idx + 1])
            idx >>= 1
 
    def __len__(self):
        return self._len
 
    def query(self, start, stop):
        if start == stop:
            return self.__getitem__(start)
        start += self._size
        stop += self._size
 
        res = self._default
        while start < stop:
            if start & 1:
                res = self._func(res, self.data[start])
                start += 1
            if stop & 1:
                stop -= 1
                res = self._func(res, self.data[stop])
            start >>= 1
            stop >>= 1
        return res
 
    def __repr__(self):
        return "SegmentTree({0})".format(self.data)



n, m, k = inlt()

i, j = 1,1

reverse = False
c = 0
cur_tube = []
tubes = 0
last_tube = False
while c < n*m:
    if reverse == False:
        while j <= m:
            cur_tube.append(i)
            cur_tube.append(j)
            j += 1
            c += 1
            if c%2 == 0:
                if tubes != k-1:
                    tubes += 1
                    cur_tube.insert(0, 2)
                    print(' '.join([str(a) for a in cur_tube]))
                    cur_tube = []
        reverse = True
        j = m
        i += 1
    else:
        while j > 0:
            cur_tube.append(i)
            cur_tube.append(j)
            j -= 1
            c += 1
            if c%2 == 0:
                if tubes != k-1:
                    tubes += 1
                    cur_tube.insert(0, 2)
                    print(' '.join([str(a) for a in cur_tube]))
                    cur_tube = []
        reverse = False
        j = 1
        i += 1

if cur_tube:
    cur_tube.insert(0, len(cur_tube)//2)
    print(' '.join([str(a) for a in cur_tube]))

            



C++ Code:

#include<bits/stdc++.h>
using namespace std;
long long n,m,k; 
void To_Next(long long &x,long long &y);
int main(){
	scanf("%lld%lld%lld",&n,&m,&k);
	for(long long i=1,x=1,y=1,siz=n*m/k;i<=k;i++){
		long long sig=(i==k?(siz+n*m%k):(siz));
		printf("%lld ",sig);
		while(sig--){
			printf("%lld %lld ",x,y);
			To_Next(x,y);
		}
		printf("\n");
	}
	return 0;
}
void To_Next(long long &x,long long &y){
	if(x&1){
		y++;
		if(y>m){
			x++,y=m;
		}
	}else{
		y--;
		if(y<1){
			x++,y=1;
		}
	}
}


Comments

Submit
0 Comments
More Questions

1077A - Frog Jumping
1714G - Path Prefixes
1369C - RationalLee
289B - Polo the Penguin and Matrix
1716A - 2-3 Moves
1670B - Dorms War
1716B - Permutation Chain
987A - Infinity Gauntlet
1676G - White-Black Balanced Subtrees
1716D - Chip Move
1352F - Binary String Reconstruction
1487B - Cat Cycle
1679C - Rooks Defenders
56A - Bar
1694B - Paranoid String
35A - Shell Game
1684A - Digit Minimization
43B - Letter
1017A - The Rank
1698B - Rising Sand
235A - LCM Challenge
1075B - Taxi drivers and Lyft
1562A - The Miracle and the Sleeper
1216A - Prefixes
1490C - Sum of Cubes
868A - Bark to Unlock
873B - Balanced Substring
1401D - Maximum Distributed Tree
1716C - Robot in a Hallway
1688B - Patchouli's Magical Talisman